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Goal 

•  The U.S. Department of Energy’s vision is to supply 20% of 
electricity consumption from wind energy by 2030. 

Challenges 

•  Increase in variability and uncertainty 
•  Forecasting wind power 

Potential 
Solutions 

•  Increase operating reserves 
•  Stochastic Programming 



Why Stochastic Programming? 

§ Weather-driven renewables can be difficult to forecast and increase the uncertainty in 
the electric power grid. 

 
§ Stochastic programming could serve as a tool to address the increased uncertainty in 

power system and electricity market operations. 
 
§ Stochastic programming is a powerful tool in dealing with uncertainty, but it has 

advantages and disadvantages. 

        + 
•  is based on axioms of foundational decision theory 
•  considers uncertainty holistically rather than focusing on worst case scenarios  
•  can effectively hedge against randomness 

     - 
•  requires probabilistic inputs which may be hard to obtain or estimate 
•  computationally hard to solve 
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Stochastic Unit Commitment Problem 

Decision Variables 
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First stage: 
Unit on/off 

Second stage: 
Thermal dispatch 

Wind dispatch 
Transmission flow 

  

Constraints 

•  Load balance 
•  Min up-time/down-time 
•  Ramp up/down 
•  Transmission limits 
•  Generation capacity limits 
•  Spinning reserves 

  

Minimize {fuel cost + start-up cost + load shedding penalty} 



Two-stage Stochastic Unit Commitment Problem 

8 

u,x, f ,w,h,δ
min ps

s∈S
∑ gi (xit

s ) ⋅uit
s + hit

s + cp δnt
s

n∈N
∑

t=1

T

∑
$

%
&

'

(
)

i∈I
∑

t=1

T

∑

u :
x :
f :
w :
h :
δ :
cp :
ps :
S :
I :
T :
Cs :

Unit on/off 
Generation output 

Transmission flow 
Wind dispatch 

Start-up cost 
Load shedding amount 

Load shedding penalty 
Probability of scenario s 

Scenario set 
Set of thermal generators 

Number of periods 
Technological constraints 

 

s.t. u,x, f ,w,h,δ ∈Cs, s ∈ S
uit
s = uit ∀i, ∀s ∈ S, t ∈ 1,...,T{ } Across 

scenarios 



Two-stage model vs. Multi-stage model 
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Two-stage 
Dynamic decisions ✗ 

History dependency ✗ 

#Binary Variables T x |I| 
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Two-stage Multi-stage 
Dynamic decisions ✗ ✓ 

History dependency ✗ ✓ 

#Binary Variables T x |I| (2T-1) x |I| 

? 



Two-stage model vs. Multi-stage model 
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Two-stage “Bucket” Multi-stage 
Dynamic decisions ✗ ✓ ✓ 

History dependency ✗ ✗ ✓ 

#Binary Variables T x |I| B x T x |I| (2T-1) x |I| 
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Alternative Approach with “Buckets” 

§ Stochastic programming models tend to result in better policies with more 

scenarios, capturing the full range of uncertainty.  

§ To solve the problem with a large number of scenarios (w/o forcing a tree 

structure) while capturing the multi-stage decision process, we consider a new 

approach: 
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•  Put scenarios into “buckets” according to  

1. their deviation from the average forecast (D) 

2. their percentiles (P) 

•  Enforce the “non-anticipativity” constraints for “buckets” 

as opposed to across all scenarios 
 



Stochastic Unit Commitment Problem 
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“Bucket” Approach 

§ Tradeoff 
– More variables versus flexibility 

§ Advantages of buckets 

– Captures multi-stage decision process 

•  no need to enforce formal tree structure 

– Takes into account extreme scenarios 

•  No scenario reduction 

– May reduce computational burden 

•  relaxation of traditional 2-stage formulation 
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“Bucket” Example  

1 – 50% below average or below 
2 – Between 50% below average and average 
3 – Between average and 50% above average 
4 – 50% above average and above 

4 Buckets 
6 Time blocks 
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Solution Tool 

We use Sandia National Laboratories’ optimization tool Coopr, in particular PySP 

(Python-based Stochastic Programming) modeling and solver library [Watson et al. 

2012]. The tool can solve the problem in two ways: 

– Extensive form (EF) 

– Progressive Hedging (PH) [Rockafellar and Wets 1991] 

•  Scenario-based decomposition scheme  

•  Relaxation of non-anticipativity constraints 

•  Has been used for unit commitment [e.g. Takriti et al. 1996] 

•  A heuristic algorithm 

16 



Problem setting and computational platform 

§ Hourly decisions over a day 
§  4 buckets in each time period 
§ Divide the time horizon into 6 time blocks 
§  1,000 wind forecasts [EWITS] 
 
Progressive Hedging 
§ Cost proportional penalty factor ρ 

– λ is the fraction  
§ MIP gap γ 
§  # of iterations before fixing, µ 
§  Enable Watson-Woodruff extensions 
§  Termdiff – termination criteria for PH 
 
Computational Platform  
§  2.6 GHz Intel Core i7 processor and 8 GB 1600 MHz DDR3 memory 
§ Coopr 3.3.7114 
§  Solver: CPLEX 12.5  
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Figure: 100 Scenarios 



Illustrative 6-Bus System 
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Replaced with a 
wind unit, able to 
provide 30% of 

daily load 

* The details of the system and parameters are available at: http://motor.ece.iit.edu/data/ 

6-Bus system* with  
•  2 thermal generators 
•  3 loads 

Bus 
No. 

Unit Cost Coefficients Pmax 
(MW) 

Pmin 
(MW) 

Ini. 
State 
(h) 

Min 
Off 
(h) 

Min 
On 
(h) 

Ramp 
(MW/h) 

Start 
Up 

(MBtu) 

Fuel 
Price 

($/ 
MBtu) 

U b 
(MBtu/ 
MW) 

c 
(MBtu/
MW2) 

G1 1 176.95 13.51 0.0004 220 100 4 4 4 55 10 1 

G2 2 129.98 32.63 0.001 100 10 3 3 2 50 200 1 
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4% 
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0.8-0.9% decrease 



6-Bus Results II - Deterministic 
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Added reserves 
to cover 95% of 

the wind 
scenarios in 
every hour 



6-Bus Results III - Policy 
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1.3% 0.6-0.8% 

Added reserves 
to cover 95% of 

the wind 
scenarios in 
every hour 



IEEE RTS-96 24-Bus  
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•  24-Bus 

•  32 generators – thermal, hydro 

•  34 lines 

•  17 loads 

•  Nuclear plant in Bus 21 is 

replaced with a wind unit (can 

provide 30% of the daily load 

on average) 

[IEEE Reliability Test System 1996] 
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24-Bus Results 
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Solving a constrained EF 



24-Bus Results 
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0.9-1% decrease 
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Conclusions and Future Work 

§ The methodology proposed improves on existing technology in three ways:  

– Lower cost solutions through increased flexibility, 

– Greater robustness in solutions by enabling expanded scenario representations, 

– Higher computational efficiency by reducing decision tree complexity. 
§ Computational results present up to 1% decrease in operational costs compared to 

two-stage formulation. 
§ Future work includes: 

– Computational effort is a challenge. Potential solutions are: 
• Parallel computing, 
• Other decomposition techniques. 

– Developing methods for more effective “bucketing” of scenarios. 
– Solving larger problems with more scenarios. 
– Investigating potential for improved pricing and financial incentives under stochastic 

scheduling. 
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